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What is a Model?

Floyd Tries to Go On Line



What is a Model?

Simplification of a real world setting.
Example-Road map is a model of the earth’s surface
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Types of Models
Conceptual Model
Scale model
Analog model
Mathematical Model

Particle tracks-GW flow __. *r oﬂ_
Missoula Valley
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Analytical Model Numerical Model



Mathematical Models

Analytical Solution (equation)
Pumping Well- Predict
Drawdown (reduction in GW levels)
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Water Table

Numerical Model
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Figure 16. Block-centered finite-difference grid used for ground-water flow model of Desert Valley, Nevada.



Different amounts and distributions of data
are required to solve different problems.

Increasing Demand for
Evidence of Simulation
Match with Field Conditions

Increasing

e Data Needs

Generic Modeling
Interpretative Modeling

Predictive Modeling



Modeling Process
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Purpose is not to build a model!!!

Figure 1. Location and general features of Desert Valley area.



Building the Conceptual
Model

Physical Framework
Geology- nature, 3D extent
Surface topography and Soils
Hydrologic Features

Hydrologic Framework

Water Level Measurements

Surface Water Elevations

Surface Water Flows

Transmission and Storage
Properties of Earth Materials

Sources of Recharge and Discharge

Physical and Hydraulic Boundaries

Source and Sinks of Water

Water Quality Data

It's the Hydrogeology!!
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Table 9. Estimated ground-water budget for Pre-simu | ation
predevelopment conditions (pre-1962), Desert

Valley, Nevada Water Balance

[All values in acre-feet per year]

Critical!!!

Estimated
Budget component predevelopment

conditions

In=Out +/- <£Storage

Inflow

Recharge from precipitation:
From mountain block (p. 33, p. 34) 3,300 - 6,800

From sand dunes (p. 35) 500 - 1,000
Infiltration from rivers (p. 19) 700 - 4,700
Subsurface inflow:

From Kings River Valley (p. 16) 900

From Quinn River Valley (p. 16)

Total inflow (rounded) @ﬁ@
Outflow
Evapotranspiration (p. 35) 10,000
Subsurface outflow:
To Pine Valley (p. 19) 100 - 400

To Southwest (p. 19) 120 - 1,200
Total outflow (rounded) 10,000 - 12,000
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Figure 16. Block-centered finite-difference grid used for ground-water flow model of Desert Valley, Nevada.
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Modeling Process
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Execute and Calibrate the Model

Set Calibration Targets

=

Differences between simulated and measured heads.

Differences between measured GW fluxes and simulated fluxes

3. Differences in the pre-simulation computed water balance and
simulated water balance.

4. Differences in locations and rates of pre-simulation and simulation

recharge and discharge.

N

Using Trial and Error or Automated Parameter Estimation,
the model is executed a number of times while adjusting
model components such that differences between
measured and simulated conditions are minimized




Pre-development 1962 Calibration

Pattern of water levels
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Figure 20. Simulated potentiometric surface for layer 1 and water levels estimated on basis of field data
predevelopmant conditions, Desert Valley, Nevada
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Figure 19. Frequency distribution of deviations between
measured and simulated hydraulic heads for predevelop-
ment simulation, Desert Valley, Nevada.

Overall measured and
simulated head match

Original Water Balance
5,700 -14,000 Inflow
10,000 - 12,000 Outflow

Simulated Flow at Boundaries
Flow of Quinn River “agreed
with estimates”.

Simulated Water Balance

Table 11. Simulated ground-water budget for
predevelopment conditions (pre-1962), Desert Valley,
Nevada

[All values in acre-feet per year, rounded to two significant figures)

Simulated
Budget component predevelopment
conditions
Inflow

Recharge from precipitation:

From mountain block 6,900

From sand dunes 440
Infiltration from rivers:

Quinn River 2,600

Kings River 110
Subsurface inflow:

From Kings River Valley 820

From Quinn River Valley 310
Total inflow 11,000

Outflow

Evapotranspiration 9,100
Subsurface outflow:

To Pine Valley 400

To Southwest 1,700
Total outflow 11,000




1962 to 1991 GW Development Simulation
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Figure 22. Estimates of net irrigation pumpage, mine-dewatering pumpage, and total
ground-water withdrawals, by stress period, specified for development simulation, Desert

Valley, Nevada.

History Matching

Transient Calibration

During modeling additional
calibration parameter adjustment
was completed to yield:

Water level and flux values in
“...matched fairly well
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Sensitivity Analyses

In this model:

1. Evaluated the sensitivity of model results to 5 hydrologic
properties using 14 model simulations. Used head changes
and calibrated flux rates at boundaries as baseline.

2. Halved and doubled parameter values.

Evaluation:
Model is most sensitive to recharge and plant use (ET)
however absolute difference in mean head change is 10 ft.

Concluded :
Uncertainty in parameters does not effect general representation
of the Gw system sufficiently to negate its use at this point.
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" ,/ Assessing the Calibration and

Determining Acceptability

What evidence do you have that a “reasonable
representation has been produced?”

Preponderance of evidence /confirming observations
documenting performance

Performance measured by closeness of fit with calibration
targets and the character and nature of temporal
and spatial data

Subjective judgment based on stated model purpose an
supporting data.
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Prediction or Testing of Three Future De-watering
Scenarios (no additional calibrations as no history)

Results of Predictions

1.Water level declines would not be localized around the mine.
2. Declines of 50 ft are simulated at 1 to 2 miles from the mine area.

3. The discharge of water to the wetland retards the expansion
of water level declines.

4. Subsurface inflow form the Quinn River Valley occurs.
5. Based on water budgets a new equilibrium may be approached

after 100 yr from the time the mine de-watering ceases.

“Past performance, as we are told, is no
guarantee of future results”

The Wisdom of Crowds-James Surowiecki




Relationship of Reasonable Assurance to Bounding
Analysis, Regulatory Limit, and Realistic Estimates

Good Poor
Performance Performance
Extreme ¢ Extreme
” e _ .~ 2 ~ -
~»  Realistic \\ i Bounding
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/ Estimate \ Estimate
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modified from NRC, 1990, GW Models and Regulatory Application p278



he Postaudit
(How good was the prediction?)

Anderson and Woessner, 1992

* Can groundwater flow models accurately predict
the future?”

“Postaudit...consists of examining the accuracy
of a prediction made at |least 10 years prior to the postaudit.

Assessments of short term predictions...are certainly useful
but do not provide as rigorous a test of predictive ability.



Analyses of 11 POSTAUDITs found four general areas
that effected model predictions:

P38 Grinnell Glacier
lacier NP.

1. Future Stress History and Distribution

i 2005 Grinnell Glacier
Glacier NP.

2. Parameter Values and Distributions

3. Calibration Conditions Not Appropriate
for Predictions,

4. Conceptual Model.




Where Does That Leave Us?

Ground Water Models contain uncertainty, however, they are
the only tool we have to assess complex settings!

We need to assess uncertainty using multiple conceptual
models and present ranges of likely results to decision
makers!



